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LE’ITER TO THE EDITOR 

Structure and perimeters of percolation clusters 
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Sciences, Tel Aviv University, Tel Aviv 69978, Israel 
$ Department of Physics, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139, USA 

Received 25 March 1986 

Abstract. Site percolation clusters are simulated at the percolation threshold on the square 
lattice. An algorithm for walks around each cluster is used to obtain information on its 
fractal geometry. The fractal dimensionality of the external perimeter is found to depend 
on the size of adsorbent particles used to measure it: if the vacant perimeter sites have 
only nearest-neighbour connectivity then the perimeter has dimension De = 1.37 f 0.03, 
instead of that of the hull (Dh= 1.75). We also measured the mass of internal dangling 
sites (surrounded by the backbone’s ‘blobs’), singly and doubly connected sites, the number 
of ‘blobs’ and the average linear distance between entry into and exit from a ‘blob’. 

Many dilute physical systems are modelled by site percolation, in which a random 
fraction p of the sites on a lattice are occupied, and the remaining sites are vacant 
(e.g. Stauffer 1985). An infinite cluster of connected sites appears above the percolation 
threshold, pE, with a density P, - ( p  -p,)’. The average distance between sites on 
connected finite clusters diverges as 6 -  Ip -pel-'. It has been realised for some time 
(Stanley 1977, Mandelbrot 1982) that these clusters have a fractal geometry. The 
number of sites s on a cluster of linear size L behaves as s -  LD, with the fractal 
dimensionality D = d - p /  Y, where d is the Euclidean dimensionality (Kirkpatrick 
1979, Kapitulnik et a1 1983 and references therein). It was later realised that various 
physical properties are determined by various subgroups of sites on the cluster, and 
that the number of sites in these may scale with different powers of L, i.e. with different 
fractal dimensionalities (Pike and Stanley 1981, Stanley 1984). The present letter 
presents the results of computer simulations of site percolation clusters on the square 
lattice, which concentrated on several new subgroups of sites, relevant to several 
physical problems, and measured their fractal dimensionalities. 

Our first results concern the external perimeters of the clusters. Voss (1984) defined 
the hull of a cluster as the occupied sites on it, which neighbour ‘external’ vacant sites, 
the latter being connected to the outside of the cluster via either nearest or next-nearest 
unoccupied neighbours (on the square lattice). He found that the average number of 
sites on the ‘hull’ of clusters of linear size L scales as 

H - ~~h 

with Dh = 1.74k0.02. Similar results were obtained for the vacant neighbouring sites 
by Ziff et a1 (1984), who generated the ‘hull’ by a special self-avoiding random walk 
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(see also Weinrib and Trugman 1985). The ‘hull’ was also related to the number of 
particles on a diffusion front by Sapoval et al (1989,  who conjectured that Dh = 
(1 + v ) / v (  =1.75 at d = 2). 

One possible application of the hull concept may relate to surface energy. Other 
applications may involve the adsorption of particles on the surface, chemical reactions 
on it, etc (e.g. Pfeifer et al 1984). In these applications, the size of the adsorbent 
particles is very important. In fact, particles of different sizes were used by Pfeifer et 
a1 to measure the fractal dimensionality of fractal surfaces. Our first result shows that 
the fractal dimensionality of the external perimeter of percolation clusters is not 
independent of the adsorbent particle size. In particular, if this size is larger than the 
‘open space’ (distance) between next-nearest-neighbour occupied sites, these particles 
will not be able to enter regions connected to the outside via next-nearest (vacant) 
neighbours. In the example shown in figure l (a) ,  this will exclude the vacant sites 
denoted by x from the external perimeter, and leave only those denoted by 0, which 
are connected to the outside only via nearest-neighbour vacant sites. Denoting the 
average number of these by E, we find that 

E - ~~e 

with 0, = 1.37 f 0.03. This fractal dimensionality is very different from Dh, showing 
that there are large impenetrable regions. The perimeter of these regions thus 
dominates the hull. 

Consider now two endpoints on a cluster, e.g. the points with the largest (smallest) 
y coordinate and-among these-with the largest (smallest) x coordinate. The 
Euclidean distance between these is denoted by L, and serves as a measure for the 
linear size of the cluster. The structure of the cluster between these endpoints is 
described by the ‘links and blobs’ picture (Stanley 1977, Coniglio 1981, 1982, Pike and 
Stanley 1981, Herrmann and Stanley 1984 and references therein): if one applies a 
voltage between the two terminals, current will flow only through the ‘backbone’, which 
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Figure 1 Examples of clusters. ( a )  Occupied sites divide into hull sites (full squares) and 
internal sites (open squares). Perimeter sites divide into the external perimeter with 
nearest-neighbour connectivity (open circles), additional external sites with next-nearest- 
neighbour connectivity ( x )  and internal perimeter sites (full circles). ( b )  Backbone sites 
are divided into singly connected sites ( 0 )  and blobs (0). Dangling sites include external 
(0) and internal (W) ones. 
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contains L , ( L )  singly connected sites (carrying the full current) and ‘blobs’ of various 
sizes. In addition, there exist many dangling sites, which do not carry current (each 
group of these is connected to the backbone via a single backbone site). A schematic 
picture is shown in figure l(b). We measured the following new properties. 

(a) Dangling sites are divided into ‘external’ ones, which are almost surrounded by 
external perimeter vacant sites, and ‘internal’ ones, which ‘hang’ inside the ‘blobs’ and 
do not touch any external perimeter site. As might be expected, most of the mass of 
the cluster consists of external dangling sites. Indeed, we find that their ‘mass’ scales 
with the fractal dimensionality D -- 1.9. We measured the sum of the ‘mass’ of the 
internal dangling sites, si, and that of the backbone sg (total mass minus external 
dangling sites), and found that it scales as LDi, with 

Di = 1.77 f 0.04. (3) 
(b) It has been proved by Coniglio (1981, 1982) that Ll( L )  - L1”( u = $ at d = 2). 

The singly connected bonds are dominant in determining the elasticity of clusters 
(Kantor and Webman 1984, Kantor 1984), the conductivity of non-linear resistor 
networks, with V - I ”  and large a (Blumenfeld and Aharony 1985), the magnetic 
correlations of Ising spin systems (Coniglio 1981, Aharony et a1 1984, 1986), etc. In 
many of these cases, the next important term involves pairs of doubly connected sites, 
such that the elimination of the two sites in a pair breaks the cluster in two. Coniglio’s 
proof can be generalised to show that the average number of these pairs, L,( L ) ,  scales 
as Lz/”. We measured both L , ( L )  and L, (L) ,  and confirmed that indeed L2-  L: - LZi”. 
In addition, we counted the number of blobs between the endpoints, N g ,  and found 
that it also scales as L””, confirming Herrmann and Stanley’s (1984) conclusion that 
the ‘strings’ of singly connected bonds have a finite average length. 

(c) The minimal path Lmin between the endpoints consists of the singly connected 
sites and the sum of minimal paths between entry and exit into the blobs. This path 
is known to scale as Ldmin, with dmin = 1.13  at d = 2 (e.g. Havlin and Nossal 1984, Hong 
and Stanley 1983a, b). Since dmin > 1 /  v, it is clear that Lmin is dominated by the sum 
of minimal paths through the blobs. Having identified the entry and exit point of each 
blob, we measured the Euclidean distances between them, and found that their sum 
scales as L d y ,  with d, = l.l0*0.07. The minimal path between the endpoints is domi- 
nated by the sum of the minimal paths between entry and exit of the blobs (plus L , ,  
which is negligible). Since d, is very close to dmin, the minimal path inside each blob 
seems to be practically proportional to the Euclidean distance between entry into and 
exit from the blob. The average of this distance scales as Ld.-’/”, and d, - 1/  U = 
0.35 f 0.07. 

Our numerical algorithm combines the methods of Leath (1976a, b), Pike and 
Stanley (1981) and Ziff et a1 (1984). Beginning with an initial occupied site at the 
origin, we use a pseudo-random number generator to decide whether each of its nearest 
neighbours is occupied (with probability p )  or vacant. The procedure continues for 
the (untested) neighbours of the connected occupied sites, until all of these are found 
to be vacant. The connected sites and the total perimeter (all vacant neighbours) are 
counted during growth. Using a frame of size 740 x 740, we rejected all the clusters 
with L> 370. Atp = p c  = 0.592 77 (Gebele 19841, this left a population of about 17 000 
clusters, with sizes s d 20 000. 

On each cluster, we identified the two endpoints and then applied a biased walk 
around it. Beginning at the lower endpoint, the walker attempts to move to its nearest 
neighbour on the left. If that site is vacant, it will try moving forward (up). If vacant, 
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it will move to the right. The procedure is now repeated iteratively, and the walker is 
forced to move backwards only if all the other alternatives are vacant. As the procedure 
is continued, the walker reaches the other endpoint. 

Figure 2(a) shows an example of a cluster, with the numbers indicating the steps 
of the left-turning walker. Note that after step number 17 the walker finds itself again 
on site number 10. It is thus clear that all the sites between 10 and 17, and all the 
sites connected to them, are external dangling sites. The next step back to 9 verifies 
that 10 is also a dangling site. The same is true for site 24. 

The procedure is then repeated with a right-turning walker. The steps of this walker 
are denoted by letters on figure 2(a).  The total number of sites visited by the two 
walkers is the hull. Sites visited by both walkers, e.g. 1,  6, 7, 8, 9, 18, 19, 20, 21, 27, 
28 and 29 in figure 2(a),  are singly connected. 

The external perimeter is identified by a similar procedure that walks on nearest- 
neighbour vacant sites around the external surface of the cluster and counts every 
perimeter site. (Around the comers the walk steps on non-perimeter sites to keep the 
n-n connectivity but these are not counted; see figure l ( a ) ) .  

To find L2,  the left-turning walker is sent again into each blob, beginning after one 
step to the right (see figure 2(b)).  This forces the walker to cover the smallest loop 
including its starting step. Some of the sites on this loop will have already been marked 
as left or right hull sites. The others are internal dangling sites or ‘cross links’. The 
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Figure 2 ( a )  Example of left- (numbers) and right-turning (letters) walks, covering the 
hull sites. (6) Procedure of identifying pairs of doubly connected sites: left-turning walk 
starts at A, and covers loop I with five right (R)  and six left (L)  hull sites. Walker next 
starts loop I1 at B, counting three right sites and zero left sites, and then loop 111 with 
eight right and five left sites. 
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contribution of this loop to L2 will be the product of the numbers of left and right 
hull sites on it. The procedure is now repeated from the place where the walker left 
the right hull (B, C in figure 2 ( b ) ) ,  and the contributions to L2 are collected until the 
other endpoint is reached. 

The properties of all clusters with linear size (distance between endpoints) in the 
bin [L ,  L + A L ) ,  with AL=O.28L, were averaged, and the results were plotted on a 
log-log scale. Although the curves look almost straight on this scale, their slopes vary 
slowly with L. Graphs of the local slopes (calculated for groups of eight points each) 
against 1 / L  are shown in figure 3. All these curves are very close to straight lines, 
indicating a leading correction-to-scaling term of order 1 /  L. Least-square fits to straight 
lines yield the asymptotic extrapolated values at L -* 00. Parabolic fits give very close 
values,and the differences are included in our quoted error bars. An exception involves 
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Figure 3 Local values of D( = d  log s / d  log L) ,  Di, D, and De.  Full lines represent linear 
(for 0, D,, 0.) and parabolic (for Di) fits. 
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Di, where our final value, equation (3), is based on the much better parabolic extrapola- 
tion (shown in figure 3 ( a ) ) .  In addition to the results already quoted, we also note 
the following: (a) the ratio L, / (NB+l ) ,  which is the average number of sites in a 
continuous ‘string’ of L, sites, is practically independent of L, and is equal to 4.7 f 0.5. 
This value is (expectedly) higher than that found by Herrmann and Stanley (1984), 
because (unlike them) we consider the two sites and the ends of each ‘string’ (e.g. 6 
and 21 in figure 2 ( a ) )  and single sites which connect two ‘blobs’ as singly connected; 
(b) the same analysing procedure was applied with the cluster’s mass, s, as the basic 
parameter instead of L. The results were consistent in the sense that L” is replaced 
(within the error bars) by s ~ ’ ~ ;  and (c) the linearity in 1/L indicates that the leading 
secondary dimensionality, after 0, is (D-1), as discussed by Aharony et a1 (1985). 

In conclusion, we emphasise again our main result: the fractal dimensionality 
measured using adsorbent particles, which approach the cluster from the outside, is 
not equivalent to that measured by different yardsticks between points on the hull. 
There probably exists a hierarchy of external perimeters, depending on the minimum 
size of the adsorbent particles, with a decreasing set of fractal dimensionalities Dh > 
De> * * ‘ > 1. 

We enjoyed discussions with D Stauffer, H E Stanley, B B Mandelbrot, H J Herrmann 
and J F Gouyet. This work was supported in part by grants from the US-Israel 
Binational Science Foundation (BSF), the Israel Academy of Sciences and Humanities, 
the Israel AEC Soreq Nuclear Research Center, and the NSF Low Temperature Physics 
Program grant DMR 85-01856. 

Note added. After we finished the present study we were informed by Meakin and Family of their recent 
study of invasion percolation in a strip geometry. They measured the analogue of our external perimeter 
of their upper surface, and found De = 1.343 f 0.002, in close agreement with our results. We thank Meakin 
and Family for this communication. 
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